Single Image Super-Resolution: Depthwise Separable Convolution Super-Resolution Generative Adversarial Network

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SRPGAN: Perceptual Generative Adversarial Network for Single Image Super Resolution

Single image super resolution (SISR) is to reconstruct a high resolution image from a single low resolution image. The SISR task has been a very attractive research topic over the last two decades. In recent years, convolutional neural network (CNN) based models have achieved great performance on SISR task. Despite the breakthroughs achieved by using CNN models, there are still some problems re...

متن کامل

Simultaneously Color-Depth Super-Resolution with Conditional Generative Adversarial Network

Recently, Generative Adversarial Network (GAN) has been found wide applications in style transfer, image-to-image translation and image super-resolution. In this paper, a colordepth conditional GAN is proposed to concurrently resolve the problems of depth super-resolution and color super-resolution in 3D videos. Firstly, given the low-resolution depth image and low-resolution color image, a gen...

متن کامل

Single Image Super-Resolution

Image super-resolution is the task of obtaining a high-resolution (HR) image of a scene given low-resolution (LR) image(s) of the scene. In this project, we have focused on the task of super-resolution given a single LR image, which is usually the case. There exist many techniques in literature addressing this task, and we have considered two techniques having the essence of [1] and [2]. In fir...

متن کامل

Fast Single Image Super-Resolution

This paper addresses the problem of single image super-resolution (SR), which consists of recovering a high resolution image from its blurred, decimated and noisy version. The existing algorithms for single image SR use different strategies to handle the decimation and blurring operators. In addition to the traditional first-order gradient methods, recent techniques investigate splitting-based ...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Sciences

سال: 2020

ISSN: 2076-3417

DOI: 10.3390/app10010375